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AbstmcL The temperatue dependences of the anisotropy constant, spin-wave stiffness 
and spontaneous magnetizations for the two-dimensional (w) Heisenberg model with 
various rypg of anisotropy and interactions have been alculated with the use of lhe 
lowtemperature perturbtion (spin-wave) theory. We argue that this theory is effective 
within a large ponian (if not the main pan) of the ferromagnetic phase, On the contrary, 
the Polyakw renormalization pmcedure is found lo be inapplicable for the termmagnetic 
phase at any anisotropy. We mnsider both the  easy-axis and Uie easy-plane ases,  taking 
into acmunt one-site and exchange anisotropy as well as the higher-order magnetic 
anisotropy and the dipole-dipole interaction. For realistic models the latter is found 
not lo change ssentially the temperature dependence of the magnetic parameters. In 
particular, we did not find the reorientation (easyaxis lo easy-plane) phase transition due 
to dipole-dipole interadion predicted by Per ia  and Pokrovsky. However, in general, the 
temperature dependence of the anisotropy mnstant prwes to be much mon: sensitive 
to the lype of the anisotropy and interactions than that of lhe spin stiffness and the 
spontaneous magnetization. In the easy-plane a s e  the difference between the spin-wave 
stiffnesses for the in-plane and the normal polarizations is found to be mlremely urongly 
Iemperature-dependenL At temperatures mmparable with Tc this difference may k of 
the order of magnitude of the stiffness itself, while at T = 0 it is of relativistic origin. 
For the -se of a wry mall anisompy we propose as well a renormalization procedure 
to perform a partial summation of the perturbation series. 

1. Introduction 

Ultrathin transition-metal films have become a very active field of research recently 
(see e.g. [l]) because of many unusual magnetic properties and perspectives of 
research and applications. In theoretical interpretation of their properties it is natural 
to refer to the 2D Heisenberg model, and thus a better understanding of the properties 
of this model is quite important. 

In this paper we develop a low-temperature perturbation theory to find the 
temperature dependence of magnetic parameters and to analyse the role of different 
interactions. We argue that this approach is reliable within a wide temperature region 
comparable with the ferromagnetic region itself. It is found that in this region the 
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perturbation theory is better than a more sophisticated Polyakov renormalization 
procedure [2] used recently [3] for the anisotropic Heisenberg model. 

The possibility of using the perturbation theory for the system in question was 
recognized, in fact, quite long ago, since it had been understood [4,5] that, while long- 
range order is absent at T # 0 for the isotropic Heisenberg model, the anisotropy 
(or the dipole-dipole interaction [6]) restores the long-range order at low T ,  Le. 
suppresses the thermal fluctuations. Several authors [4-8] have calculated the first 
term in the T series for the spontaneous magnetization; to this end one uses the 
harmonic part of the Hamiltonian only. But to calculate the next t e r m  in this 
expansion as well as to investigate the T dependence of other magnetic parameters, 
e.g. of the anisotropy constant or of the spin stiffness, one has to take into account 
the anharmonicities and, for realistic models, it has never been done correctly to the 
best of our knowledge. This is surprising because for the 3D case the calculation of 
the terms of higher order in T is well known (see e.g. [9,10]), and the ZD case is 
even simpler, in some respects, than the 30 one. 

Indeed, it is the quantum-statistics effects that govern the temperature dependence 
of the spontaneous magnetization in a 3D system, while for ZD systems the use of 
classical statistics leads to a logarithmic error only as to the first-order term in the T 
dependence of the spontaneous magnetization; this is why several authors (see e.g. 
[3, 11,121) have used just classical statistics for the problem. Let us mention also 
that the classical results can be easily corrected to incorporate the quantum-statistics 
effects by an appropriate choice of the cut-off wavevector. It is not evident, of course, 
that the cut-off wavevector IC,, which enters the results of the harmonic theory as 
Ink,, plays the same role in the anharmonic theory. We shall see that sometimes it 
is, in fact, not the case and that the neglect of the quantum-statistics effects was one 
of the reasons for the erroneous conclusion made by Pescia and Pokrovsky [3] about 
the possibility of a reorientation phase transition due to the dipole-dipole interaction. 
But even in such a situation the classical results are useful, because, corrected in the 
above-mentioned way, they enable one to make quite reliable estimations. Let us 
mention also that it is far from simple to develop a consistent quantum theory of the 
low-T anharmonic effects because of the well known specific feature of ZD systems, 
namely formation of spin-wave bound states at any wavevector. 

One can expect that the perturbation theory, being a low-temperature theory by 
virtue of its construction, is valid, in fact, up to temperatures comparable with the 
Curie temperature T,. Indeed, the anisotropy is highly effective in suppressing the 
thermal fluctuations: it restores the long-range order up to temperatures that are 
much higher than the anisotropy energy (E,). The reason is that the main role of 
the anisotropy is to fur the mean direction of the spontaneous magnetization, while 
the restoring force for local fluctuations of the spin direction is provided by the 
exchange interaction. These fluctuations, the spin waves, remain small within all the 
ferromagnetic phase because as they become large a phase transition occurs due to 
another type of fluctuation, the spin flips. 

The spin flips that play the main role in the phase transition are extremely rare a t  
low T and, to a much greater extent than the spin waves, within the main part of the 
ferromagnetic region. Recall the T dependence of the spontaneous magnetization 
for the ZD king model (which is due to the spin flips only): at T = OST, it is about 
0.2% less than at T = 0 (10% at T = 0.8Tc). As to the anisotropic Heisenberg 
model, the spin-flip activation energy at T = 0 is the same as for the king model 
and is equal to the exchange energy Eexa. %e, owing to spin waves, it decreases as 
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T increases, but as T, is less than in the king case one can expect that also for the 
Heisenberg model the spin flips are quite rare unless in the immediate vicinity of the 
phase transition. For both models the spin-flip concentration at low T is proportional 
to exp(E,,/T) and this is why the spin flips are completely neglected by the low-T 
perturbation theoly: it provides expansion in powers of T while all the derivatives 
of the above exponent are zero at T = 0. Thus the perturbation theory takes into 
acmunt the spin wves  only [5,9, lo]. Now it is easy to realize that it is erroneow 
to use the Polyakov renormalization procedure [2] to calculate the T dependence 
of magnetic parameters in the ferromagnetic phase as has been done by Pescia and 
Pokrovsky [3]. Indeed, within this procedure, which has been proposed to treat the 
isotropic Heisenberg systems, no distinction is made between the spin waves and the 
Spin flips. When applied to an anisotropic system it provides algebraic expressions for 
the T dependence of magnetic parameters. It means, in effect, that both the spin- 
wave and the spin-flip contributions are power-like within this procedure. This may 
well be correct for the paramagnetic phase at T >> T, hut is incorrect for T < T,, 
and the perturbation theory that simply neglects the spin flips proves to be more 
exact for T < Tc than the Polyakov procedure, which, in the case of an anisotropic 
system, overestimates the spin flips, ascribing to them power-in-T contributions. The 
above arguments about effectiveness of the perturbation theory are supported hy our 
Monte Carlo calculations [13-151. 

It S worth while to underline that even if they were formally correct the results of 
the Polyakov renormalization procedure would still be less useful for interpretation 
of the experimental data than the results of the perturbation theory. Indeed, this 
procedure provides a partial summation of the perturbation series; namely the most 
divergent terms, the ‘leading’ terms, are summarized. More specifically, the terms 
[Tln(E,,/E,)]” are taken into account and others that contain the logarithm in a 
lower power are neglected. But in reality the characteristic value of Eexh/E, is lo2; 
anyway it is no more than 16. It means that the logarithm is never big enough to 
neglect the  ‘less important’ terms, and there is no reason to believe that summation 
of the infinite series of ‘leading’ terms gives a more exact result than the calculation 
of several lowest-order perturbation theory terms, both leading and non-leading ones. 
It does not mean, of course, that this summation is not an interesting (albeit, at least 
at present, mainly methodical) problem. 

Let us now mention papers by other authors devoted to the calculation of the 
T dependence of the magnetic parameters of 20 anisotropic Heisenberg systems. 
Khokhlachev Ill] treated an easy-axis system without the in-plane anisotropy, Le. 
considered the case when no spontaneous magnetization is present. Feigelman and 
Pokrovsky [12] have taken into account the dipoledipole interaction for this model 
to calculate spontaneous magnetization and other magnetic parameters. We will 
abstain from criticism of this paper; let us mention only that for a real system the in- 
plane highest-order anisotropy is of much greater importance than the dipole-dipole 
interaction (see section 7). The easy-axis case has been investigated in the above 
cited paper by Pescia and Pokrovsky 131. However, this paper is erroneous (see 1161 
and section 6). 

Thus we were unable to find in the literature a consistent treatment of the T 
dependence of the magnetic parameters (outside the harmonic approximation) of the 
anisotropic Heisenberg system with realistic interactions. That is why we believe it is 
worth while to expose the relevant theory here. 

The paper is organized as follows. In section 2 we describe the perturbation 
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theory techniques for, as an example, the case of one-site easy-axis anisotropy. In 
section 3 we calculate, for this case, the T dependence of the magnetic parameters 
and compare our results with those obtained by Pescia and Pokrovsky [3] with the 
help of the Polyakov renormalization procedure [2]. In section 4 we propose another 
renormalization procedure similar to that of Brezin and Zinn-Justin [17] and Nelson 
and Pelcovits [18] to calculate the T dependence of the magnetic parameters in 
the case of very small anisotropy. In sections 5 and 6 we consider more realistic 
Hamiltonians taking into account the secondader  exchange anisotropy and the 
fourth-order one (section 5) and the dipole-dipole interaction (section 6). We 
compare the results of section 6 with those of [3]. In section 7 we consider easy-plane 
systems with fourth-order in-plane anisotropy and dipole4ipole interaction, and show 
that the situation here is quite similar to that of the easy-axis case with the exception 
of the gigantic temperature dependence of the spin-stiffness anisotropy. In section 8 
we summarize the results of the paper and discuss their applicability to interpret 
experimental data as well as their relevance to other systems. 

A P Levanyuk and N Garcia 

2. Method 

Let us consider the classical Heisenberg Hamiltonian with the single-site anisotropy: 

where i , j  numerate the lattice site and 7 l l  is the unit-length vector. When calculating 
the partition function one has to  take into account the fact that of the variables m,, 
my, 7n2 there are only two independent ones because of the condition m2 = 1. Let 
us consider non-interacting isolated classical spins. It is evident that the calculation 
of the partition function implies integration Over the unit sphere for every lattice 
site. It is convenient instead to integrate Over the area of the unit circle in the 
m,, my plane. We shall consider m,, my as components of the 2D vector 7%. 

One has, of course, to integrate twice because there are two hemispheres. It is 
necessary to take into account the change of the surface element after projecting on 

I *  7,-1!7.z _I __. _ _  _._*... ._ .L. r r  I 
U ' L s U "  'UIU L" I r p r o L G  ,,Li U, "IC ,I'lLI,I,L",,,'l,, Utb pmrtr. D l l l "  U" uv - ( I -  I& , 

by +(1 -  n2)1/2 for the upper hemisphere by -(1- nz)I/' for the lower one. As a 
result the partition function is given by the expression: 

4.- .-a-.-.. -:.. n .o .a 

where si is the king variable, i.e. a number that is either +1 or -1, {si) designates 
the summation over the values of every king variable, the integration Over 71 runs 
over the unit circle and each s i  ranges independently over the values &l. As 
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one can formally incorporate the term (T/2)  CiIn[l - n2( i ) ]  into the Hamiltonian 
[17, IS]. It is the resulting ‘effective’ Hamiltonian that we shall consider below. 

Within the spin-wave theory, as bas been mentioned before, one puts si = 1 for 
every site and, within the continuous media approximation to which we shall restrict 
ourselves, the ‘effective’ Hamiltonian acquires the form: 

T 

where X = /\/a2, a is the lattice constant is the number of the lattice sites per 
unit area) and r = 0.25Jr in the case of nearest-neighbour interaction J ( i - j )  = J ,  
T k the nearest-neighbour number. We see that the anharmonicity in the Hamiltonian 
is due to the replacement of m, by (1  - n2)’j2 and to the occurrence of In( 1 - n2) .  

Recall that the integration over TA is over a restricted area (unit circle) and it may 
seem to be quite unfortunate because the perturbation theory implies the Gaussian 
integration as a zero approximation. However, as the fluctuations of 7z are small, 
one can extend the limit of the integration to infinity without making a big error: the 
corrections are proportional to exp(-A/T) where A is of order of magnitude of T,, 
Le. they are of the Same nature as those due to the spin flips. The small magnitude 
of the local fluctuations ((n’) < 1) is, of course, the main condition of applicability 
of the perturbation theory. 

The harmonic (and T-independent) part of H ,  is 

where n ( k )  is the Fourier component of m(r) and the area of the plane is assumed 
to be equal to unity. From equation (5) one has 

(7A(k)+k)) = 2 ~ / ( 2 ~  + rk.2). (6) 

Then 

The quantum effects can be taken into account approximately if in equation (7) 
one uses instead of the classical cut-off k, = ?r/a the quantum one defined by 
the condition h w ( k )  = T where w ( k )  is the spin-wave frequency. As / t w ( k )  = 
TS-ia2122 (S is the spin number), one has kr = a -1 (ST/ r ) i / 2 .  Using the 
quantum cut-off one obtains logarithmic corrections only and that is why the classical 
approach is quite justified for small anisotropies. One sees from equation (7) that the 
characteristic ‘spin-wave’ temperature is Tc” and the condition of smallness of the 
local fluctuation is T < y. It is reasonable to expect [ll] that for small anisotropies 
T, is of order of magnitude of F. 
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The coefficients X and r in equation (4) we shall call, correspondingly, the 
anisotropy coefficient and the spin-wave stiffness. The 'renormalized' coefficients 
are defined as follows. Let us fix a Fourier component n(k , )  and n(-h,)  (of course, 
n(-h,) = n'(hu)) and calculate 

where we do not integrate over 7i(ku), n(-h , ) .  The expansion of F ( 9 ~ ( h , ) , n ( - h ~ ) )  
in terms of its arguments contains, of course, a term proportional to m ( E , ) n - k , ) .  
Expanding the coefficient of this term in terms of k, one obtains 

2x + fk; + ... (9) 

the coefficient and f being what we call the renormalized anisotropy and spin-wave 
stiffness coefficients. 'Ib the harmonic approximation (see equation (5)) one obtains, 
evidently, 

x = x  f = r .  (10) 

It is well known that equation (6) obtained in the Gaussian approximation proves 
to be exact if one replaces 2X + I'k: by the coefficient at n(h , )n ( -ko )  mentioned 
above, which has the meaning of the generalized stiffness. Therefore, as to calculation 
of (ln(h)7t(-h)l) the anharmonic effects are reduced to renormalization of A,  r and, 
in principle, to appearance of terms of higher order in k. But as to the higher-order 
fluctuations one has, of course, to take into account the non-Gaussian contribution. 

Using the conventional thermodynamic perturbation theory (see e.g. [19]) one 
obtains 

F(lL(h,),71.( 4,)) = F,(n(h,)n( 4,)) + ( H a ( n ( k , ) , n (  -h , ) ) )  
1 

2T - - [ ( H ~ ( ~ L ( ~ " ) , ~ L ( - ~ u ) ) )  - ( H ~ ( ~ L ( ~ " ) , ~ ~ ( - ~ , ) ) ) * ]  + . . .  (11) 

where Ha = H ,  - H ,  and the brackets ( ) designate the Gaussian averaging with 
the help of H,. Let us mention that in our case H ,  is a non-algebraic function of its 
variables, i.e. when represented as a series it contains an infinite number of terms. 

3. Temperature dependence of magnetic parameters in the case of one-site easy-axis 
anisotropy 

The lowest-order part of H ,  (see equation (4)) reads: 

According to equation (11) to  calculate f ,  to a first approximation, it is enough 
to consider the first term in the first integral in equation (12). In the Fourier 
representation it takes the form: 

(13) 
r - _  k3h4.,(h,).,(~z).,(h~)n=(~~). 

kl+kztk,+k+=U 
2 
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There are only two ways to single out the term containing k ~ n z ( k , ) n , ( - k , ) :  put 
k, = k,, k, = -k, or  vice versa. Retaining these terms only we get 

Thus to a first approximation 

i' = I-( 1 + T I T ) .  (15) 

It is also elementary to find the first-order renormalization of the anisotropy 
coefficient. Now the second integral in equation (12) is also relevant. Putting k, = 0 
we obtain instead of equation (14): 

(16) 
r T 

2aZ 2 -nj.(O) kZn,(k)n,(-k)  - --"Z(O). 
k 

After averaging one finds 

Using the above results for r and one can obtain the next-order term of the series 
for magnetization substituting p and x for r and X in equation (7) and taking into 
account the next term in the expansion of the square root in this equation. As a 
result one obtains 

(m,)  = 1 -TIT," - T z / T ' T  (18) 
where T' = 47rT. We see that, somewhat unexpectedly, the TZ term is not of the 
order of magnitude of ( but is smaller as long as T' > TF. 

Flgure L l ines in thr graphs of penurbation theory 
expansion of r and A: (a) internal line, (lnz(k)lz) 

a1 b' or (lnu(k)12); (b) internal line, k*(ltL=(k)lz) or 
51 - - + t k z ( l ~ i v ( k ) l z ) ;  (c) external lines, mntribution to ,i; 

(d )  external lines, contribution to i'. 

Using equations (15) and (18) one can determine the temperature changes in 
the spin-wave dispersion law. Tiking into account that the spin-wave frequency 
w - r(m,)kz bkZ one finds that b - 1 - Thus a linear term is 
absent in the temperature dependence of b. It is remarkable that a similar situation 
takes place for 3D ferromagnets as well [20]. 

We display the T2 contributions to p and x with the help of diagrams (see 
figures 1 4 ) ,  where we accept notations similar to those of [18]. After the relevant 
calculations one gets: 
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where +, C 3 1. Using these expressions one can find that 
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(m , )  = 1 - TIT? - 2 T 2 / T F  - (21) 

where the T3 terms mntaining TIT' are omitted as they are small in the small 
anisotropy case. It should be mentioned that to the T2 approximation the spin 
stiffness becomes kdependent at T # 0. It means, in fact, that the k4 term 
in the spin-wave dispersion law, which we have neglected in the Hamiltonian (4), 
acquires a T dependence also. Nevertheless this term remains negligible at k = kr 
if T < (SFYTan)'/', where T,, = Xa2. Although T,, is very small (several 
degrees), it enters the inequality in the power 113 only and for the typical magnitudes 
of r and X the above condition is not very different from T < T ,  which is the 
general condition of applicability of the perturbation theory. Let us mention also that 
as Tc < (for small anisotropy T, E v / 2  [14,15,21]) the non-linear terms in 
equation (21) remain small even at T 2 T,. 

[r /217&Zl* 

V 
>L< 

Figure 2. Venices in lhe graphs of 
the pe+baI ion theory expansion of 
i' and A. Dashed lines separale IL:, 

(-*/2a*l? >----< (-T/la'lB' n', mrresponding 10 Ule same space 
mordinale. 

- ... . . ~  

A 6 " 
Qum 3. Penurbarion lheory graphs for i': (a) 
fin1 order; (b) wmnd order. 

Figure 4 Penurhation lheory graphs for A: (U )  

fin1 order; (b)  Second order. 

'Ib compare our results with those obtained by Pescia and Pokrovsky [3] with the 
help of the Polyakov renormalization procedure [Z], one has to take into account 
the difference in the definition of the renormalized coefficients here and in [3]. 
Designating rpp and A,, the coefficients of [3] one has: 

'Ihus it follows from the results of [3] that 

l= = r [ l +  T/TF + ( T / F ) ' ]  

= X ( 1 -  T / T ) .  
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We see that in spite of the fact that the first-order terms coincide with those calculated 
within the perturbation theory, the second-order terms are quite different: the series 
for l= contains the second-order terms in TIT? while that for i does not. This 
observation means that one should discard the use of the Polyakov renormalization 
procedure for anisotropic systems at low T,  no matter how small the anisotropy. The 
physical reasons for this situation are discussed at some length in section 1. 

4. Temperature dependence of the magnetic parameters: renormalization results 

Now we shall hy to find the T dependence of l= and j; using a renormalization 
procedure in a manner similar to that of Nelson and Pelcovits [MI. Our aim is to 
find the sums of the most important terms of the perturbation series for r and x. 
Let us recall once more that for our system these sums deviate from the exact values 
of r and 1 because the exponential terms due to spin flips and the finiteness of limits 
of the integration over ?L are neglected. ?aking into account also the importance of 
the ‘non-leading’ terms one sees that the finding of the sums being interresting per se 
is mt expected to be important for interpretation of experimental data on the system 
in question. 

The starting point of our calculations is the expression for the ‘effective 
Hamiltonian’ (in a different sense than in section 2). This Hamiltonian (or ‘incomplete 
h-ee energy’) can be obtained if in equation (12) one leaves unintegrated not only 
n ( k J  but all the Fourier components n(b) with k < q. Because the integration 
over the Fourier components with k > q means in fact averaging over the small-scale 
fluctuations, one may begin with the effective Hamiltonian that has the simplest form 
compatible with the symmetly Gust as the Hamiltonian (4)) and describes the system 
with a bigger unit cell and an effective spin at an ‘effective lattice site’. In our case 
one has to take into account that neglect of the spin flips, i.e. the assumption that the 
sign of the king variables si is the same for all the lattice sites, means that even at 
X = 0 the uniaxial symmetry arises because now vn, is always positive. It means that 
unlike Hamiltonian (4) where the coefficients of ( V V ~ ~ ) ~ ,  ( V T ~ , ) ~  and (Vm,)’ are 
the same, it is not the case for the effective Hamiltonian, and instead of the three 
first terms in equation (4) one now has 

;rq[(vm,)* + ( V T ~ , ) ~ I  + trlq(vTn,)z (25) 

where m,,,,,(r) contain the Fourier components with k < q only. RI get an 
expression of the form similar to that of equation (4) one has once more to take 
into account that m,, my, m, are not independent variables. But instead of the 
condition 

mZ(i)+ mi(;)  + mf(i )  = 1 [lm,(k)12+ lwJ~)l* + 1%(k)l21 = 1 
!+*a-’ 

(26) 

one now has 

C[lm,(k)I2 + 17ny(k)l2 + Im,(k)IZl = a: < 1 
h < g  

(27) or 7 n Z ( T )  2 + mi(,) + m : ( ~ )  = CL: 
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and the expression for the effective Hamiltonian reads: 

where n(r )  contains the Fourier components with IC < q only. Equation (28) is, 
of course, approximate: it does not contain, in particular, the space derivatives of 
higher order in spite of the fact that, as we have seen already (section 3), the 
thermal fluctuations bring about the IC dependence of the spin stiffness. However, 
this dependence reduces, in effect, to a renormalization of IC, while only In IC, figures 
in the most important terms of the perturbation series, and thus this effect may be 
neglected. 

The next step is to find the equations for I?,, r,,, A, and (1, performing 
integration over m ( k )  with the k-vectors within the layer q - dq to q.  Because of the 
smallness of the interval dq, one can restrict oneself to the first-order perturbation 
theory. As a result one obtains: 

One has, of course, to find also equations for r,, and it , .  Tb this end one 
can look for renormalization of the coefficients in the terms of the fourth and sixth 
order in the effective Hamiltonian. It is fairly tedious but one can see that if one 
assumes that T,,ag’ = r, one obtains a closed set of equations. We shall see that 
the solution of these equations is in agreement with the perturbation theory. Strictly 
speaking, it does not prove that this assumption is correct, hut it shows that it is 
plausible, at least. One has 

- d r ,  = (T /4~)d ln (2X, / r ,  + 4’) G (T/4a)dC 

- dA, = -(AqT/4aT,)dC. (32) 

re = C,  - (T/4r )C (33) 

A, = Cz/[Ci - (T/4n)CI. (34) 

(31) 

The solution of these equations is 

The constants C, and C, are to be found from the condition that at q = k, there is 
no renormalization and = A. As a result one finds for q = 0, i.e. = r, 
for r,=” = F, A,=, = X: 

i- = r + ( ~ / 4 ~ ) 1 n ( r k i / 2 ~ )  

X = x/[i  + ( ~ / 4 ~ r )  1 n ( r k k / 2 ~ ) ] .  

(35) 

(36) 

It is straightfonuard to check that these equations provide the same terms proportional 
to TIT? and (T/T?)’ as the perturbation theory. 
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5. Exchange second-order and fourth-order anisotropies 

There is no physical reason to reduce the second-order anisotropy to the one-site one. 
Let us take into account the exchange anisotropy as well. For the continuous-medium 
Hamiltonian one now has 

(Vm,)’dr-X m3dr .  J (37) 

Thus in equation (13) r has to be replaced by r,. One finds instead of equations (15) 
and (17): 

Because r ,/r n. 1 the change in the T dependence of r is not essential. Of more 
interest is the change in the T dependence of i. The second term in equation (39) 
containing a sum diverging at large k cannot be calculated within classical statistics 
and one has to use the quantum cut-off. As k r  - TI/’ this term is proportional to 
T2. ”IS, owing to quantum-statistics effects, equations (39) and (17) are practically 
equivalent to linear-in-T terms. We mention that for systems with small anisotropy 
the second term, even calculated within the classical statistics, is normally smaller 
than the main one: X(T/TT).  Indeed, if we assume realistically that rl  - r = X/a2 
the second term in equation (39) is smaller than the main one as long as T’ >> y, 
Le. for very small anisotropies it can be neglected. However, as mentioned above, for 
real systems the two sides of the inequality are of the Same order of magnitude. 

Let us take into account now the fourth order anisotropy, Le. the term I<,nZn;. 
As long as this term does not contain the space derivatives it does not contribute, 
at least to the first order of the perturbation theory, to the T dependence of but 
does to that of i. This contribution is 

KlT/T? (9 

and may be either positive or negative. As to the magnitude of I<, the data are scarce 
for transition-metal films. It has been found for some of them that the fourth-order 
anisotropy constant is one order of magnitude less than the second-order one (21,221. 

Symmetry allows also the terms 

IGl[(Vn,)2n; + (Vny)’n21 I<zz[(Vns)Z?Lz. + (Vn,)’n;l (41) 

$ ( K , ,  + Kzz)T/TP.  (42) 

which provide a contribution to l? 

Estimating K ,  as Xu’, we see that as long as XuZ << r this contribution can be 
neglected compared with that given by equation (20). 
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For the contribution to one has 

This term is of the same structure as that in equation (39) and the above discussion 
is relevant here as well. 

Thus taking account of the second-order exchange anisotropy and the fourth-order 
anisotropies does not lead to an appreciable change in the T dependence of the spin 
stitfness r and, thence, in the case of small anisotropy, of the T dependence of the 
magnetization. The anisotropy constant X is more sensitive to the changes and can be 
essentially modified because of the contribution of the fourth-order anisotropy. The 
contribution of the exchange anisotropy is practically the same as that of the one-site 
one owing to the quantum-statistics suppression of short-wave fluctuations. 

6. Easyaxis Heisenberg system with dipoldipole  interaction 

The dipoledipole term in the Hamiltonian has the conventional form: 

where R = (gpS)2  and U is the unit vector pointing in the direction of - r’. To 
use the independent variables nz ,  ny, one has to replace m, by (1 - n2)’/’ as in 
section 2. For the harmonic part of the Hamiltonian (in the Fourier form) one has: 

where 

= @U,O + @l,O(b). (46) 

One sees from e.g. [3] that aUap = -4rr/n and from [6] that ~ b l m 0 ( k )  = 2rrk ,kp/k  
for ka <( 1. As O l W p  begins to be comparable with at kn 2 1 only and in 
this region of k-space the term r k 2  in the coefficient of i ~ ( k ) i i ( - k )  in equation (5) 
dominates because the exchange energy is much bigger than both the anisotropy 
and the dipoledipole ones (r >> ,la2, 47rO), one can neglect (I~i,o(k) in all 
the integrals over k-space that enter the formulae for the magnetic parameters. 
Thus the essential contribution of the dipoledipole interaction to the harmonic 
part of the Hamiltonian (as to calculation of the magnetic parameters) reduces to 
-4?r(Q/a) J w 2 ( r )  dr, which is, in fact, due to the demagnetizing field. We see that, 
to the harmonic approximation, the dipoledipole interaction provides, in effect, a 
T-independent contribution to the anisotropy constant, the latter being now not 
hut A, = X - 4rrR/a. 
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The contribution of the diple-dipole interaction to the lowest-order anharmonic 
part of the Hamiltonian is 

nz(T )7$ (T ' )  - fn'(T) - in4(.') 
dT dT'. 

4 IT - T q 3  (47) 

It is evident that to the first approximation this part does not contribute to l= hut does 
to X. 'Ib find this contribution it is convenient to represent 41.) as wU+n'(r), where 
no is the homogeneous p r t  of ~ L ( T ) ,  and retain the terms that are proportional to 
nf. It is enough to restrict ourselves to the term proportional to n',,. One has 

where [SI 

Thus one obtains for the dipoledipole contribution to x,: 

where the quantum cut-off vector has been used to estimate the integral in 
equation (SO). Thus 

X, = x , ( i  - T I T )  - n ~ 3 / 2 / 2 ~ r 3 1 2 .  (51) 

We see that the anisotropy constant has, to a first approximation, the same 
temperature dependence as the anisotropy constant of the system without the dipole- 
dipole interaction. The, the latter provides a term proportional to T3I2, but this term 
is of higher order in temperature and does not contain In(Tki)/2X. It means that, at 
least in the small anisotropy case, the second term in equation (51) can be neglected. 
Recall that it is just this case which has been treated in [3]. Thus the conclusion made 
there that the dipote-dipole interaction may lead to change of sign of the anisotropy 
constant at a temperature well below T, proves to be unsuhstantiated (for a detailed 
criticism of this paper, see [16]). 

7. Easyplane Ease 

The easy-plane Heisenberg ferromagnet without dipole-dipole interaction and higher- 
order in-plane anisotropy is quite similar to the z-y model and thus there is no 
spontaneous magnetization and the phase transition is of the Berezinshi-Kosterliu- 
Thouless type, Evidently a higher-order in-plane anisotropy that fixes the direction 
of the magnetization in the plane stabilizes the long-range order, making the local 
fluctuations of the spin direction small at low T [4,5]. Less trivial is that the 
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dipoledipole interaction brings about the same effect in the absence of the in- 
plane anisotropy [6]. Thus for a model of a ZD in-plane ferromagnet that takes into 
account the in-plane anisotropy and/or the dipole-dipole interaction, the application 
of the perturbation theory is quite possible and has been repeatedly performed to 
calculate the T dependence of the spontaneous magnetization [4-8]. In this section 
we calculate the T dependence of the spin stiffness and the anisotropy constant as 
well as discuss the relative role of the dipole-dipole interaction and of the in-plane 
anisotropy in the T dependence of the magnetic parameters. 

Let us first neglect the dipole-dipole interaction and take into accuunt the in-plane 
anisotropy. 'RI be specific we consider the case of cubic anisotropy, but our results 
remain valid also for other symmetries. In the cubic case the in-plane anisotropy is of 
the fourth order and one has to add the term 1Cn;n: tu the Hamiltonian. For IC > 0 
the equilibrium direction of the spontaneous magnetization is along z or y axes. k t  
it be the z axk. As we now expect the fluctuations of my and ~ n ,  to be small, we 
choose these variables as independent ones, putting m2 = ( 1  - rnZ - n ~ t ) ' / ~ .  Thus 
to the harmonic approximation one has 

A P Levanyuk and N Garcia 

Y 

( ~ ~ , ( r z ) ~ ~ )  = T / ( Z K +  rk2) ( l m , ( k ) ~ ~ )  = T / ( Z I X I  + rP). (52) 

Evidentiy X is negative now because we consider the easy-plane case. 

magnetization is given by 
'RI the harmonic approximation the T dependence of the spontaneous 

where 

= 4 r r r / ~ n [ r k . ~ / 2 ( i i ~ ~ ~ ) L / 2 ] .  (54) 

According to experimental data and numerical calculations (see e.g. (22, U]) 
the fourth-order anisotropy constants for transition-metal films are smaller than 
the second-order ones by one order of magnitude. Therefore, as one sees 
from equation (54), the characteristic temperature for the change of spontaneous 
magnetization is practically the same for both the easy-axis and the easy-plane cases. 
Using the Same method as in section 3 one has for the spin-wave stiffness: 

We see that, owing to the anharmonicity, there arises a difference between P y y  
and r,, even in the case when one has ryy = r,, in the Hamiltonian. The T 
dependence of the spin stiffness anisotropy Pyy  - r,, proves to be unusually strong, 
really gigantic because already at relatively low T (say at T / F  = 0.1) this quantity 
becomes very big compared with its usual d u e  at T = 0, which is normally lO-'T. 
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For the temperature dependence of j; and 12, the latter coefficient being defined 
as the term proportional to n,(k,,)n,(-k,,) at ko -t 0 in the thermodynamic 
potential (9). one has: 

x = A(  1 - T I T o )  

K = IC(1- T / T r , )  - ICT/TCU. 

(57) 

(58) 

One can expect that the perturbation theory is applicable when TIT?, < 1 
because the fluctuations of my are the most important. However all the Ti are of 
the same order of magnitude for real systems. 

?b mnsider effects of dipoledipole interaction one a n  use the same method as 
in section 6. One finds that the harmonic contribution to the Hamiltonian is 

~ [ ‘ b , , ( k ) 7 n z ( k ) 7 n , ( - k )  + ‘by(k)7ny(k)7ny(-k)1 (59) 
k 

where 

4n 
d R =  - 

a a 

and 

for ka << 1. 
XI the first-order approximation the formula for spontaneous magnetization reads 

This equation is nothing more than the classical version of a formula due to Maleev 
161. Compared with equation (54) one can say that the dipole-dipole interaction 
provides effective anisotropy for both m, and my fluctuations. For the first ones the 
effective anisotropy constant is equal to 2nCZla and for the second it is (4nR)2/2r. 

It seems quite reasonable in the case of Uansition-metal films to estimate 2nQ/a 
as equal within an order of magnitude to the anisotropy constant due to spin-lattice 
interactions [24]. Thus the effective anisotropy constant for the in-plane fluctuations 
may be estimated as A(Aaz/r). We see that as AnZ < r the anisotropy for in-plane 
fluctuations due to dipole-dipole interactions is very small and for physical systems 
under mnsiderations the fourth-order in-plane anisotropy is much more imponant. 

The lowest-order anharmonic part of the dipole-dipole interaction term in the 
Hamiltonian b 



10292 

where TA = (my ,  m z ) ,  and instead of equation (48) one has 
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h h 

where 

exp(ik. R) - 1 
d R  = 2rrk. 

One conclude$ once again that, owing to the effects of quantum statistics, the lowest- 
order contributions of the anharmonic part of the dipole-dipole interaction to the 
anisotropy constants is proportional to T3I2. We see also that even in the absence of 
the in-plane anisotropy at T = 0 it appears at T $ 0 due to dipole-dipole interaction. 
Physically it means, of course, that the latter contributes to the T dependence of the 
in-plane anisotropy constant. 

8. Conclusion 

We have used the low-T perturbation theory to analyse the T dependence of 
the magnetic parameters of the two-dimensional Heisenberg ferromagnet in the 
ferromagnetic phase. We have found that the competing Polyakov renormalization 
procedure is inapplicable for the problem, providing correctly only the linear-in-T 
terms. 

For the sake of simplicity we have adduced the perturbation theory formulae 
for the case when In(rki /2X) >> 1. In this case one can neglect the influence of 
uncertainty of choice of k ,  as well as corrections due to quantum statistics. However, 
for systems with realistic parameters this logarithm is never very big and one has to 
take this into account when comparing quantitatively the results of the analytical 
calculations with those of a real or computer experiment. In the first case one has 
to take into account the quantum-statistics effects, and it is straightforward to do 
so within the first orders of the perturbation theory. In the second case, to deal 
with results of classical Monte Carlo calculations. for example. one has to take into 
account the real spin-wave dispersion law instead of restricting oneself by the long- 
wave approximation. The results of the perturbation theory become modeldependent 
but no obstacles are seen to obtain them. 

The formulae of thii paper in spite of being of semiquantitative nature provide 
a general picture of the relative role of different interactions in the temperature 
dependence of the magnetic parameters. We see, in particular, that the characteristic 
temperature for the T dependence of the anisotropy constant is (or Tc) and 
no reorientation phase transition due to dipole-dipole interaction at T << Tc is 
expected, unlike the statement of Pescia and Pokrovsky [3]. In general the role of the 
dipole4ipole interaction in the T dependence of spontaneous magnetization, spin 
stiffness and anisotropy constant is found to be insignificant for all the real systems. 
We have found also that the T dependence of the spin stiffness is determined mainly 
by the exchange interaction, and other interactions do not influence essentially this T 
dependence. But it is not the case for the anisotropy constant, which is much more 
sensitive to the nature of the non-exchange interactions. In the case of the easy- 
plane ferromagnet we have found that the difference between the spin-wave stiffness 
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for the in-plane and the normal magnetizations has unusually strong temperature 
dependence, and being very small at T = 0 of the stiffness) becomes of its 
order of magnitude at T comparable with T,. 

In our theory we have neglected the spin flips, and this makes the theory 
inapplicable in the vicinity of a ferromagnetic phase transition where the spin flips 
play the leading role. But we argued in section 1 that the temperature region where 
spin flips do not influence essentially the T dependence of spontaneous magnetization 
k fairly big. These qualitative arguments are supported by Monte Carlo results by 
Garcia and Ribas [13] and by Serena et al [14]. 

The approach of this paper may be of some use also for the theory of structural 
phase transitions. Indeed, the situation when one has to consider two different types 
of thermal excitations, i.e. small vibrations (phonons or spin waves in the present 
paper) and the jumps over the barrier of a double-well potential (spin flips in the 
present paper) is quite typical in this field. One can speculate that in some cases the 
jumps over the barrier (‘quasi spin flips’) become important, as to T dependence of 
various parameters, in a close vicinity of the phase transitions only, while in a wider 
temperature range the T dependence k governed by the small lattice vibrations, 
which renormalize as well the activation energy of the ‘quasi spin flips’. However, 
the small anisotropy case, which was of major interest within the present paper, is a 
specific feature of magnetic systems and we do not know a similar example for the 
structural ones. 
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